Biblio
Found 13 results
[ Author] Title Type Year Filters: Keyword is Mammary Glands, Animal [Clear All Filters]
“Gene networks driving bovine milk fat synthesis during the lactation cycle.”, BMC Genomics, vol. 9, p. 366, 2008.
, “Old and new stories: revelations from functional analysis of the bovine mammary transcriptome during the lactation cycle.”, PLoS One, vol. 7, no. 3, p. e33268, 2012.
, “Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle.”, Physiol Genomics, vol. 29, no. 3, pp. 312-9, 2007.
, “A novel dynamic impact approach (DIA) for functional analysis of time-course omics studies: validation using the bovine mammary transcriptome.”, PLoS One, vol. 7, no. 3, p. e32455, 2012.
, “ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation.”, J Nutr, vol. 138, no. 6, pp. 1019-24, 2008.
, “Evaluation of Suitable Internal Control Genes for RT-qPCR in Yak Mammary Tissue during the Lactation Cycle.”, PLoS One, vol. 11, no. 1, p. e0147705, 2016.
, “Identification of internal control genes for quantitative polymerase chain reaction in mammary tissue of lactating cows receiving lipid supplements.”, J Dairy Sci, vol. 92, no. 5, pp. 2007-19, 2009.
, “Peroxisome proliferator-activated receptor-gamma activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents.”, J Dairy Sci, vol. 92, no. 9, pp. 4276-89, 2009.
, ,
, ,
“Internal controls for quantitative polymerase chain reaction of swine mammary glands during pregnancy and lactation.”, J Dairy Sci, vol. 91, no. 8, pp. 3057-66, 2008.
, “Overexpression of SREBP1 (sterol regulatory element binding protein 1) promotes de novo fatty acid synthesis and triacylglycerol accumulation in goat mammary epithelial cells.”, J Dairy Sci, vol. 99, no. 1, pp. 783-95, 2016.
,